Source code for pypfopt.cla

"""
The ``cla`` module houses the CLA class, which
generates optimal portfolios using the Critical Line Algorithm as implemented
by Marcos Lopez de Prado and David Bailey.
"""

import numpy as np
import pandas as pd
from . import base_optimizer


[docs]class CLA(base_optimizer.BaseOptimizer): """ Instance variables: - Inputs: - ``n_assets`` - int - ``tickers`` - str list - ``mean`` - np.ndarray - ``cov_matrix`` - np.ndarray - ``expected_returns`` - np.ndarray - ``lb`` - np.ndarray - ``ub`` - np.ndarray - Optimization parameters: - ``w`` - np.ndarray list - ``ls`` - float list - ``g`` - float list - ``f`` - float list list - Outputs: - ``weights`` - np.ndarray - ``frontier_values`` - (float list, float list, np.ndarray list) Public methods: - ``max_sharpe()`` optimizes for maximal Sharpe ratio (a.k.a the tangency portfolio) - ``min_volatility()`` optimizes for minimum volatility - ``efficient_frontier()`` computes the entire efficient frontier - ``portfolio_performance()`` calculates the expected return, volatility and Sharpe ratio for the optimized portfolio. - ``clean_weights()`` rounds the weights and clips near-zeros. - ``save_weights_to_file()`` saves the weights to csv, json, or txt. """
[docs] def __init__(self, expected_returns, cov_matrix, weight_bounds=(0, 1)): """ :param expected_returns: expected returns for each asset. Set to None if optimising for volatility only. :type expected_returns: pd.Series, list, np.ndarray :param cov_matrix: covariance of returns for each asset :type cov_matrix: pd.DataFrame or np.array :param weight_bounds: minimum and maximum weight of an asset, defaults to (0, 1). Must be changed to (-1, 1) for portfolios with shorting. :type weight_bounds: tuple (float, float) or (list/ndarray, list/ndarray) or list(tuple(float, float)) :raises TypeError: if ``expected_returns`` is not a series, list or array :raises TypeError: if ``cov_matrix`` is not a dataframe or array """ # Initialize the class self.mean = np.array(expected_returns).reshape((len(expected_returns), 1)) # if (self.mean == np.ones(self.mean.shape) * self.mean.mean()).all(): # self.mean[-1, 0] += 1e-5 self.expected_returns = self.mean.reshape((len(self.mean),)) self.cov_matrix = np.asarray(cov_matrix) # Bounds if len(weight_bounds) == len(self.mean) and not isinstance( weight_bounds[0], (float, int) ): self.lB = np.array([b[0] for b in weight_bounds]).reshape(-1, 1) self.uB = np.array([b[1] for b in weight_bounds]).reshape(-1, 1) else: if isinstance(weight_bounds[0], (float, int)): self.lB = np.ones(self.mean.shape) * weight_bounds[0] else: self.lB = np.array(weight_bounds[0]).reshape(self.mean.shape) if isinstance(weight_bounds[0], (float, int)): self.uB = np.ones(self.mean.shape) * weight_bounds[1] else: self.uB = np.array(weight_bounds[1]).reshape(self.mean.shape) self.w = [] # solution self.ls = [] # lambdas self.g = [] # gammas self.f = [] # free weights self.frontier_values = None # result of computing efficient frontier if isinstance(expected_returns, pd.Series): tickers = list(expected_returns.index) else: tickers = list(range(len(self.mean))) super().__init__(len(tickers), tickers)
@staticmethod def _infnone(x): """ Helper method to map None to float infinity. :param x: argument :type x: float :return: infinity if the argmument was None otherwise x :rtype: float """ return float("-inf") if x is None else x def _init_algo(self): # Initialize the algo # 1) Form structured array a = np.zeros((self.mean.shape[0]), dtype=[("id", int), ("mu", float)]) b = [self.mean[i][0] for i in range(self.mean.shape[0])] # dump array into list # fill structured array a[:] = list(zip(list(range(self.mean.shape[0])), b)) # 2) Sort structured array b = np.sort(a, order="mu") # 3) First free weight i, w = b.shape[0], np.copy(self.lB) while sum(w) < 1: i -= 1 w[b[i][0]] = self.uB[b[i][0]] w[b[i][0]] += 1 - sum(w) return [b[i][0]], w def _compute_bi(self, c, bi): if c > 0: bi = bi[1][0] if c < 0: bi = bi[0][0] return bi def _compute_w(self, covarF_inv, covarFB, meanF, wB): # 1) compute gamma onesF = np.ones(meanF.shape) g1 = np.dot(np.dot(onesF.T, covarF_inv), meanF) g2 = np.dot(np.dot(onesF.T, covarF_inv), onesF) if wB is None: g, w1 = float(-self.ls[-1] * g1 / g2 + 1 / g2), 0 else: onesB = np.ones(wB.shape) g3 = np.dot(onesB.T, wB) g4 = np.dot(covarF_inv, covarFB) w1 = np.dot(g4, wB) g4 = np.dot(onesF.T, w1) g = float(-self.ls[-1] * g1 / g2 + (1 - g3 + g4) / g2) # 2) compute weights w2 = np.dot(covarF_inv, onesF) w3 = np.dot(covarF_inv, meanF) return -w1 + g * w2 + self.ls[-1] * w3, g def _compute_lambda(self, covarF_inv, covarFB, meanF, wB, i, bi): # 1) C onesF = np.ones(meanF.shape) c1 = np.dot(np.dot(onesF.T, covarF_inv), onesF) c2 = np.dot(covarF_inv, meanF) c3 = np.dot(np.dot(onesF.T, covarF_inv), meanF) c4 = np.dot(covarF_inv, onesF) c = -c1 * c2[i] + c3 * c4[i] if c == 0: # pragma: no cover return None, None # 2) bi if type(bi) == list: bi = self._compute_bi(c, bi) # 3) Lambda if wB is None: # All free assets return float((c4[i] - c1 * bi) / c), bi else: onesB = np.ones(wB.shape) l1 = np.dot(onesB.T, wB) l2 = np.dot(covarF_inv, covarFB) l3 = np.dot(l2, wB) l2 = np.dot(onesF.T, l3) return float(((1 - l1 + l2) * c4[i] - c1 * (bi + l3[i])) / c), bi def _get_matrices(self, f): # Slice covarF,covarFB,covarB,meanF,meanB,wF,wB covarF = self._reduce_matrix(self.cov_matrix, f, f) meanF = self._reduce_matrix(self.mean, f, [0]) b = self._get_b(f) covarFB = self._reduce_matrix(self.cov_matrix, f, b) wB = self._reduce_matrix(self.w[-1], b, [0]) return covarF, covarFB, meanF, wB def _get_b(self, f): return self._diff_lists(list(range(self.mean.shape[0])), f) @staticmethod def _diff_lists(list1, list2): return list(set(list1) - set(list2)) @staticmethod def _reduce_matrix(matrix, listX, listY): # Reduce a matrix to the provided list of rows and columns if len(listX) == 0 or len(listY) == 0: return matrix_ = matrix[:, listY[0] : listY[0] + 1] for i in listY[1:]: a = matrix[:, i : i + 1] matrix_ = np.append(matrix_, a, 1) matrix__ = matrix_[listX[0] : listX[0] + 1, :] for i in listX[1:]: a = matrix_[i : i + 1, :] matrix__ = np.append(matrix__, a, 0) return matrix__ def _purge_num_err(self, tol): # Purge violations of inequality constraints (associated with ill-conditioned cov matrix) i = 0 while True: flag = False if i == len(self.w): break if abs(sum(self.w[i]) - 1) > tol: flag = True else: for j in range(self.w[i].shape[0]): if ( self.w[i][j] - self.lB[j] < -tol or self.w[i][j] - self.uB[j] > tol ): #  pragma: no cover flag = True break if flag is True: del self.w[i] del self.ls[i] del self.g[i] del self.f[i] else: i += 1 def _purge_excess(self): # Remove violations of the convex hull i, repeat = 0, False while True: if repeat is False: i += 1 if i == len(self.w) - 1: break w = self.w[i] mu = np.dot(w.T, self.mean)[0, 0] j, repeat = i + 1, False while True: if j == len(self.w): break w = self.w[j] mu_ = np.dot(w.T, self.mean)[0, 0] if mu < mu_: del self.w[i] del self.ls[i] del self.g[i] del self.f[i] repeat = True break else: j += 1 def _golden_section(self, obj, a, b, **kargs): # Golden section method. Maximum if kargs['minimum']==False is passed tol, sign, args = 1.0e-9, 1, None if "minimum" in kargs and kargs["minimum"] is False: sign = -1 if "args" in kargs: args = kargs["args"] numIter = int(np.ceil(-2.078087 * np.log(tol / abs(b - a)))) r = 0.618033989 c = 1.0 - r # Initialize x1 = r * a + c * b x2 = c * a + r * b f1 = sign * obj(x1, *args) f2 = sign * obj(x2, *args) # Loop for i in range(numIter): if f1 > f2: a = x1 x1 = x2 f1 = f2 x2 = c * a + r * b f2 = sign * obj(x2, *args) else: b = x2 x2 = x1 f2 = f1 x1 = r * a + c * b f1 = sign * obj(x1, *args) if f1 < f2: return x1, sign * f1 else: return x2, sign * f2 def _eval_sr(self, a, w0, w1): # Evaluate SR of the portfolio within the convex combination w = a * w0 + (1 - a) * w1 b = np.dot(w.T, self.mean)[0, 0] c = np.dot(np.dot(w.T, self.cov_matrix), w)[0, 0] ** 0.5 return b / c def _solve(self): # Compute the turning points,free sets and weights f, w = self._init_algo() self.w.append(np.copy(w)) # store solution self.ls.append(None) self.g.append(None) self.f.append(f[:]) while True: # 1) case a): Bound one free weight l_in = None if len(f) > 1: covarF, covarFB, meanF, wB = self._get_matrices(f) covarF_inv = np.linalg.inv(covarF) j = 0 for i in f: l, bi = self._compute_lambda( covarF_inv, covarFB, meanF, wB, j, [self.lB[i], self.uB[i]] ) if CLA._infnone(l) > CLA._infnone(l_in): l_in, i_in, bi_in = l, i, bi j += 1 # 2) case b): Free one bounded weight l_out = None if len(f) < self.mean.shape[0]: b = self._get_b(f) for i in b: covarF, covarFB, meanF, wB = self._get_matrices(f + [i]) covarF_inv = np.linalg.inv(covarF) l, bi = self._compute_lambda( covarF_inv, covarFB, meanF, wB, meanF.shape[0] - 1, self.w[-1][i], ) if (self.ls[-1] is None or l < self.ls[-1]) and l > CLA._infnone( l_out ): l_out, i_out = l, i if (l_in is None or l_in < 0) and (l_out is None or l_out < 0): # 3) compute minimum variance solution self.ls.append(0) covarF, covarFB, meanF, wB = self._get_matrices(f) covarF_inv = np.linalg.inv(covarF) meanF = np.zeros(meanF.shape) else: # 4) decide lambda if CLA._infnone(l_in) > CLA._infnone(l_out): self.ls.append(l_in) f.remove(i_in) w[i_in] = bi_in # set value at the correct boundary else: self.ls.append(l_out) f.append(i_out) covarF, covarFB, meanF, wB = self._get_matrices(f) covarF_inv = np.linalg.inv(covarF) # 5) compute solution vector wF, g = self._compute_w(covarF_inv, covarFB, meanF, wB) for i in range(len(f)): w[f[i]] = wF[i] self.w.append(np.copy(w)) # store solution self.g.append(g) self.f.append(f[:]) if self.ls[-1] == 0: break # 6) Purge turning points self._purge_num_err(10e-10) self._purge_excess()
[docs] def max_sharpe(self): """ Maximise the Sharpe ratio. :return: asset weights for the max-sharpe portfolio :rtype: OrderedDict """ if not self.w: self._solve() # 1) Compute the local max SR portfolio between any two neighbor turning points w_sr, sr = [], [] for i in range(len(self.w) - 1): w0 = np.copy(self.w[i]) w1 = np.copy(self.w[i + 1]) kargs = {"minimum": False, "args": (w0, w1)} a, b = self._golden_section(self._eval_sr, 0, 1, **kargs) w_sr.append(a * w0 + (1 - a) * w1) sr.append(b) self.weights = w_sr[sr.index(max(sr))].reshape((self.n_assets,)) return self._make_output_weights()
[docs] def min_volatility(self): """ Minimise volatility. :return: asset weights for the volatility-minimising portfolio :rtype: OrderedDict """ if not self.w: self._solve() var = [] for w in self.w: a = np.dot(np.dot(w.T, self.cov_matrix), w) var.append(a) # return min(var)**.5, self.w[var.index(min(var))] self.weights = self.w[var.index(min(var))].reshape((self.n_assets,)) return self._make_output_weights()
[docs] def efficient_frontier(self, points=100): """ Efficiently compute the entire efficient frontier :param points: rough number of points to evaluate, defaults to 100 :type points: int, optional :raises ValueError: if weights have not been computed :return: return list, std list, weight list :rtype: (float list, float list, np.ndarray list) """ if not self.w: self._solve() mu, sigma, weights = [], [], [] # remove the 1, to avoid duplications a = np.linspace(0, 1, points // len(self.w))[:-1] b = list(range(len(self.w) - 1)) for i in b: w0, w1 = self.w[i], self.w[i + 1] if i == b[-1]: # include the 1 in the last iteration a = np.linspace(0, 1, points // len(self.w)) for j in a: w = w1 * j + (1 - j) * w0 weights.append(np.copy(w)) mu.append(np.dot(w.T, self.mean)[0, 0]) sigma.append(np.dot(np.dot(w.T, self.cov_matrix), w)[0, 0] ** 0.5) self.frontier_values = (mu, sigma, weights) return mu, sigma, weights
[docs] def set_weights(self, _): # Overrides parent method since set_weights does nothing. raise NotImplementedError("set_weights does nothing for CLA")
[docs] def portfolio_performance(self, verbose=False, risk_free_rate=0.02): """ After optimising, calculate (and optionally print) the performance of the optimal portfolio. Currently calculates expected return, volatility, and the Sharpe ratio. :param verbose: whether performance should be printed, defaults to False :type verbose: bool, optional :param risk_free_rate: risk-free rate of borrowing/lending, defaults to 0.02 :type risk_free_rate: float, optional :raises ValueError: if weights have not been calculated yet :return: expected return, volatility, Sharpe ratio. :rtype: (float, float, float) """ return base_optimizer.portfolio_performance( self.weights, self.expected_returns, self.cov_matrix, verbose, risk_free_rate, )